Understanding And Using Linear Programming
CLICK HERE > https://byltly.com/2tk9dN
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization).
More formally, linear programming is a technique for the optimization of a linear objective function, subject to linear equality and linear inequality constraints. Its feasible region is a convex polytope, which is a set defined as the intersection of finitely many half spaces, each of which is defined by a linear inequality. Its objective function is a real-valued affine (linear) function defined on this polyhedron. A linear programming algorithm finds a point in the polytope where this function has the smallest (or largest) value if such a point exists.
Linear programming can be applied to various fields of study. It is widely used in mathematics and, to a lesser extent, in business, economics, and some engineering problems. Industries that use linear programming models include transportation, energy, telecommunications, and manufacturing. It has proven useful in modeling diverse types of problems in planning, routing, scheduling, assignment, and design.
In 1939 a linear programming formulation of a problem that is equivalent to the general linear programming problem was given by the Soviet mathematician and economist Leonid Kantorovich, who also proposed a method for solving it.[2] It is a way he developed, during World War II, to plan expenditures and returns in order to reduce costs of the army and to increase losses imposed on the enemy.[citation needed] Kantorovich's work was initially neglected in the USSR.[3] About the same time as Kantorovich, the Dutch-American economist T. C. Koopmans formulated classical economic problems as linear programs. Kantorovich and Koopmans later shared the 1975 Nobel prize in economics.[1] In 1941, Frank Lauren Hitchcock also formulated transportation problems as linear programs and gave a solution very similar to the later simplex method.[2] Hitchcock had died in 1957, and the Nobel prize is not awarded posthumously.
From 1946 to 1947 George B. Dantzig independently developed general linear programming formulation to use for planning problems in the US Air Force.[4] In 1947, Dantzig also invented the simplex method that, for the first time efficiently, tackled the linear programming problem in most cases.[4] When Dantzig arranged a meeting with John von Neumann to discuss his simplex method, Neumann immediately conjectured the theory of duality by realizing that the problem he had been working in game theory was equivalent.[4] Dantzig provided formal proof in an unpublished report \"A Theorem on Linear Inequalities\" on January 5, 1948.[3] Dantzig's work was made available to public in 1951. In the post-war years, many industries applied it in their daily planning.
Dantzig's original example was to find the best assignment of 70 people to 70 jobs. The computing power required to test all the permutations to select the best assignment is vast; the number of possible configurations exceeds the number of particles in the observable universe. However, it takes only a moment to find the optimum solution by posing the problem as a linear program and applying the simplex algorithm. The theory behind linear programming drastically reduces the number of possible solutions that must be checked.
The linear programming problem was first shown to be solvable in polynomial time by Leonid Khachiyan in 1979,[5] but a larger theoretical and practical breakthrough in the field came in 1984 when Narendra Karmarkar introduced a new interior-point method for solving linear-programming problems.[6]
Linear programming is a widely used field of optimization for several reasons. Many practical problems in operations research can be expressed as linear programming problems.[3] Certain special cases of linear programming, such as network flow problems and multicommodity flow problems, are considered important enough to have much research on specialized algorithms. A number of algorithms for other types of optimization problems work by solving linear programming problems as sub-problems. Historically, ideas from linear programming have inspired many of the central concepts of optimization theory, such as duality, decomposition, and the importance of convexity and its generalizations. Likewise, linear programming was heavily used in the early formation of microeconomics, and it is currently utilized in company management, such as planning, production, transportation, and technology. Although the modern management issues are ever-changing, most companies would like to maximize profits and minimize costs with limited resources. Google also uses linear programming to stabilize YouTube videos[7]
Suppose that a farmer has a piece of farm land, say L km2, to be planted with either wheat or barley or some combination of the two. The farmer has a limited amount of fertilizer, F kilograms, and pesticide, P kilograms. Every square kilometer of wheat requires F1 kilograms of fertilizer and P1 kilograms of pesticide, while every square kilometer of barley requires F2 kilograms of fertilizer and P2 kilograms of pesticide. Let S1 be the selling price of wheat per square kilometer, and S2 be the selling price of barley. If we denote the area of land planted with wheat and barley by x1 and x2 respectively, then profit can be maximized by choosing optimal values for x1 and x2. This problem can be expressed with the following linear programming problem in the standard form:
Every linear programming problem, referred to as a primal problem, can be converted into a dual problem, which provides an upper bound to the optimal value of the primal problem. In matrix form, we can express the primal problem as:
Covering and packing LPs commonly arise as a linear programming relaxation of a combinatorial problem and are important in the study of approximation algorithms.[8] For example, the LP relaxations of the set packing problem, the independent set problem, and the matching problem are packing LPs. The LP relaxations of the set cover problem, the vertex cover problem, and the dominating set problem are also covering LPs.
Otherwise, if a feasible solution exists and if the constraint set is bounded, then the optimum value is always attained on the boundary of the constraint set, by the maximum principle for convex functions (alternatively, by the minimum principle for concave functions) since linear functions are both convex and concave. However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (that is, the constant function taking the value zero everywhere). For this feasibility problem with the zero-function for its objective-function, if there are two distinct solutions, then every convex combination of the solutions is a solution.
However, the simplex algorithm has poor worst-case behavior: Klee and Minty constructed a family of linear programming problems for which the simplex method takes a number of steps exponential in the problem size.[9][14][15] In fact, for some time it was not known whether the linear programming problem was solvable in polynomial time, i.e. of complexity class P.
This is the first worst-case polynomial-time algorithm ever found for linear programming. To solve a problem which has n variables and can be encoded in L input bits, this algorithm runs in O ( n 6 L ) {\\displaystyle O(n^{6}L)} time.[5] Leonid Khachiyan solved this long-standing complexity issue in 1979 with the introduction of the ellipsoid method. The convergence analysis has (real-number) predecessors, notably the iterative methods developed by Naum Z. Shor and the approximation algorithms by Arkadi Nemirovski and D. Yudin.
However, Khachiyan's algorithm inspired new lines of research in linear programming. In 1984, N. Karmarkar proposed a projective method for linear programming. Karmarkar's algorithm[6] improved on Khachiyan's[5] worst-case polynomial bound (giving O ( n 3.5 L ) {\\displaystyle O(n^{3.5}L)} ). Karmarkar claimed that his algorithm was much faster in practical LP than the simplex method, a claim that created great interest in interior-point methods.[17] Since Karmarkar's discovery, many interior-point methods have been proposed and analyzed.
The current opinion is that the efficiencies of good implementations of simplex-based methods and interior point methods are similar for routine applications of linear programming. However, for specific types of LP problems, it may be that one type of solver is better than another (sometimes much better), and that the structure of the solutions generated by interior point methods versus simplex-based methods are significantly different with the support set of active variables being typically smaller for the latter one.[24]
There are several open problems in the theory of linear programming, the solution of which would represent fundamental breakthroughs in mathematics and potentially major advances in our ability to solve large-scale linear programs.
This closely related set of problems has been cited by Stephen Smale as among the 18 greatest unsolved problems of the 21st century. In Smale's words, the third version of the problem \"is the main unsolved problem of linear programming theory.\" While algorithms exist to solve linear programming in weakly polynomial time, such as the ellipsoid methods and interior-point techniques, no algorithms have yet been found that allow strongly polynomial-time performance in the number of constraints and the number of variables. The development of such algorithms would be of great theoretical interest, and perhaps allow practical gains in solving large LPs as well. 59ce067264
https://www.cdglobal.org/forum/welcome-to-the-forum/bullet-heaven-2-download-pc-game